Расчет мощности солнечной электростанции для дома: особенности и конструкция

Расчет солнечной электростанции для дома

Вопрос получения электроэнергии альтернативными способами достаточно актуален в наше время. Одним из вариантов обеспечения электроснабжения дома является установка солнечной электростанции. Такой вариант может использоваться в качестве дополнительного альтернативного источника электричества либо в качестве основного, если стоит задача электроснабжения дома при отсутствии возможности подключения к электрическим сетям, например, по причине их удаленности.

Первый этап реализации данной идеи – это расчет будущей солнечной электростанции. В данной статье приведем рекомендации, которые помогут правильно рассчитать требуемую мощность будущей солнечной электростанции и правильно оценить возможность реализации данной идеи в зависимости от различных факторов.

Исходные данные

Прежде всего, необходимо определиться, какие задачи должна выполнить будущая электростанция. Самый важный вопрос – это наличие централизованного электроснабжения и его надежность.

Первый вариант

Дом подключен к электрическим сетям, но электроснабжение ненадежное и существует проблема частого отключения электричества. В данном случае необходимо определиться, какие задачи должна выполнять домашняя солнечная электростанция.

Если перерывы в электроснабжении непродолжительные, то задача альтернативного источника электроэнергии – обеспечить питание наиболее важных электроприборов.

Необходимо проанализировать какие электроприборы будут эксплуатироваться в период отключения электричества, и записать их мощность и время работы для проведения дальнейших расчетов.

Второй вариант

Те же исходные данные, что и в первом варианте, но перерывы в электроснабжении продолжительные и требуется реализовать резервный источник электроснабжения, питающий все необходимые бытовые электроприборы, которые ежедневно эксплуатируются в доме. Также записываем мощность и продолжительность работы электроприборов.

Третий вариант

Дом не имеет подключения к электрическим сетям и возможность подключения по той или иной причине отсутствует. В данном случае солнечная электростанция будет выступать в роли основного источника электроснабжения дома.

Если вопрос электроснабжения дома решается впервые, то необходимо продумать, какие электроприборы планируется эксплуатировать в доме и выбрать их мощность, руководствуясь принципом экономии, то есть выбирать минимальную мощность, так как стоимость солнечной электростанции напрямую зависит от ее мощности.

Реализация идеи солнечной электростанции достаточно затратная, поэтому необходимо очень ответственно подойти к вопросу расчета будущих нагрузок и продумать все возможные варианты.

Расчет нагрузок электроприборов

При расчете нагрузок электроприборов необходимо отдельно рассматривать каждый из электроприборов, анализируя все возможные нюансы его эксплуатации.

Сразу необходимо отсеять все электроприборы, функции которых можно реализовать другим способом, без использования электроэнергии.

Перечислим электроприборы, которые нецелесообразно запитывать от солнечной электростанции и соответствующую им альтернативную замену:

электропечь, электрочайник, электрические обогреватели. Если в доме для приготовления пищи используется электропечь, то на случай отключения электричества можно построить твердотопливную печь, на которой можно будет готовить пищу, греть воду, а также эксплуатировать ее для обогрева дома. В качестве запасного варианта можно приобрести газовую плитку с баллоном;

электрический водонагреватель. Альтернативный вариант – солнечный водонагреватель либо реализация подогрева воды от печи; – колодезный водяной насос. На случай отключений электричества должна быть предусмотрена возможность ручного забора воды из колодца. В случае отсутствия подключения к электросетям для удобства повседневной эксплуатации можно включить насос в перечень нагрузок, которые будут питаться от будущей электростанции;

крупорушка, мельница и другие приспособления, используемые при ведении хозяйства в доме. В данном случае можно отдать предпочтение ручным приспособлениям.

Отдельно следует сказать об освещении дома. При наличии централизованного электроснабжения для повседневной эксплуатации выбирается любой тип ламп, исходя из личных предпочтений. А для автономного электроснабжения необходимо отдать предпочтение наиболее экономичным типам ламп из имеющегося ассортимента – то есть светодиодным. Необходимо выбрать оптимальное количество ламп и их мощность, чтобы обеспечить желаемый уровень освещенности в том или ином месте.

В доме есть электроприборы и устройства, которые имеют большую мощность, но эксплуатируются редко. Учитывать мощность данных электроприборов при проектировании солнечной электростанции нецелесообразно, так как стоимость электростанции значительно увеличится, а в основном данная мощность не будет использована. К таким приборам можно отнести сварочный аппарат, электрифицированный инструмент (углошлифовальная машина, перфоратор, обрабатывающие станки и т.д.).

В случае отсутствия централизованного электроснабжения для эксплуатации таких электроприборов целесообразнее приобрести дизельный (бензиновый) генератор. Наличие в доме генератора дает преимущество в том, что если солнечные панели не зарядили аккумуляторную батарею, то пополнить нехватку заряда можно посредством включения генератора.

Для большей эффективности, надежности и нагрузочной способности автономное электроснабжение дома целесообразнее реализовать с применением двух альтернативных источников – солнечных панелей и ветрогенераторов.

Наличие ветрогенераторов позволяет увеличить суммарную мощность автономного электроснабжения и, возможно все электроприборы, в том числе и мощные можно будет эксплуатировать без необходимости применения генератора. В любом случае необходимо рассматривать вариант комбинирования двух источников альтернативной электроэнергии, не отдавая предпочтение лишь одному из вариантов.

Подробный пример расчета общего потребления электроэнергии и подбора оборудования для домашней солнченой электростанции смотрите в статьях Бориса Цупило:

Расчет требуемой мощности электростанции

Второй важный параметр – нагрузочная способность электростанции, то есть максимальная величина мощности, которую может выдавать солнечная электростанция.

При расчете нагрузок электроприборов необходимо проанализировать, какие электроприборы будут работать одновременно, и какая максимальная мощность потребуется для их питания в пики нагрузки. При этом желательно продумать эксплуатацию электроприборов таким образом, чтобы не было резких перепадов нагрузок.

Также необходимо учитывать особенности работы некоторых электроприборов. Например, нужно учесть пусковые токи компрессора холодильника и электродвигателей различных электроприборов.

Лимит выдаваемой мощности электростанцией ограничивает инвертор – устройство, которое осуществляет преобразование постоянного тока аккумуляторной батареи в переменный ток бытовой сети 220 В.

Рассчитывая мощность инвертора, следует учитывать также характеристики аккумуляторной батареи, которая накапливает электроэнергию, вырабатываемую солнечными панелями. В данном случае идет речь о максимально допустимых токах разряда аккумуляторной батареи.

Для защиты инвертора солнечной электростанции от сверхтоков, в частности перегрузки используется автоматический выключатель. Для контроля и ограничения нагрузок можно использовать реле приоритета нагрузок. Бытовые электроприборы разделяются на несколько групп по степени важности (приоритету), устанавливается нагрузочный лимит.

В процессе эксплуатации электроприборов реле приоритета нагрузок будет контролировать значение нагрузки в реальном времени, и в случае превышения установленного лимита будет отключать часть нагрузки с меньшим приоритетом, предотвратив отключение автоматического выключателя и соответственно обесточивание наиболее важных электроприборов.

Расчет мощности солнечных панелей

Солнечная электростанция вырабатывает электрическую энергию только в светлое время суток, при наличии достаточного светового потока. Солнечные панели должны иметь такую мощность, чтобы они смогли накопить в аккумуляторных батареях такое количество электрической энергии, которое обеспечит питание всех бытовых электроприборов в течение суток.

Существуют справочники уровня солнечной радиации и солнечной инсоляции для каждого региона – обычно такие данные предоставляют реализаторы солнечных панелей. Уровень солнечной радиации показывает примерное количество генерируемой электроэнергии солнечными панелями в разное время года. Показатель солнечной инсоляции позволяет учесть возможные ухудшения погодных условий и получить более точное значение вырабатываемой мощности солнечными элементами.

Необходимо учитывать, что справочные данные являются ориентировочными и не всегда соответствуют фактическим характеристикам работы солнечных панелей.

При построении домашней солнечной электростанции необходимо предусматривать возможность увеличения ее мощности в будущем посредством подключения дополнительных солнечных панелей и аккумуляторов для накапливания генерируемой электроэнергии.

Как и упоминалось выше, необходимо проанализировать актуальность применения другого источника альтернативной электроэнергии для того, чтобы обеспечить достаточный запас мощности автономного электроснабжения дома с учетом всех возможных факторов.

Исходя из мощности солнечных панелей, выбирается контроллер, посредством которого осуществляется отдача генерируемой электроэнергии в аккумуляторную батарею.

Очень важным критерием является наличие средств на реализацию автономного источника электроснабжения дома. Поэтому при выборе тех или иных элементов необходимо корректировать свой выбор исходя из имеющегося бюджета.

Как рассчитать солнечную электростанцию для дома

Чтобы узнать требуемое количество фотоэлементов для обеспечения достаточным количеством электроэнергии частного или загородного дома, необходимо произвести некоторые расчеты. Но для них не потребуются сложные формулы и знания различных физических величин. Постараемся разобраться с данной проблемой наиболее простыми способами, которые понятны любому человеку.

Главным критерием для определения необходимого числа батарей является их производительность – количество энергии, вырабатываемой за определенный промежуток времени. Дополнительно следует учесть, что кроме фотоэлементов потребуются контроллер (для определения уровня заряда), аккумуляторная батарея, и инвертор.

Определение количества батарей и общей мощности

Для определения числа фотоэлементов необходимо знать, сколько электроэнергии необходимо для обеспечения потребностей всех электроприборов в доме. Если за месяц вы потребляете 120 кВт*ч электричества, такое же количество энергии должны вырабатывать и солнечные элементы за данный промежуток времени.

Функционирование солнечных панелей возможно только во время светового дня. Мощность вырабатываемого тока, указанная в документации, достигается лишь при идеальных условиях: отсутствие облаков, предметов, делающих тень, свет попадает под прямым углом. Чем меньше значение угла падения лучей (острый угол), тем меньше производительность элементов. Если в атмосфере присутствует легкая дымка или на небе есть едва заметные облака, эффективность батарей может уменьшиться в два или три раза, а в пасмурную погоду они вырабатывают до 15 – 20 раз меньше энергии, чем указано в паспорте.

Для проведения расчетов принимают промежуток времени, на протяжении которого производительность фотоэлементов близка к максимальной. Он начинается с 9 часов утра и заканчивается в 4 часа дня. Разумеется, панели будут функционировать на протяжении всего светового дня, однако за указанный выше период они вырабатывают до 70% всей производимой энергии.

Панели, общая мощность которых составляет 1 кВт, выработают 7 кВт*ч энергии на протяжении семи часов. Дополнительно они произведут 2-3 кВт*ч энергии за остальные световые часы, которая будет использоваться в качестве запасной, поскольку производительность в пасмурные дни резко снижается. Из этого следует, что при использовании фотоэлементов с производительностью 1кВт*ч максимальная выработка в месяц составит 210 кВт. Это довольно высокий показатель, однако существуют следующие нюансы:

  • В месяце далеко не каждый день солнечный. Следует ознакомиться со статистическими данными метеоцентров, чтобы узнать среднее количество пасмурных дней. Вполне может оказаться, что на протяжении целой недели батареи не смогут вырабатывать и половины заявленной мощности. За вычетом четырех дней количество выработанной энергии сократится на 28 кВт и составит 182 кВт*ч.
  • Также следует учитывать, что количество солнечной энергии на единицу площади зависит от сезона. Световой день в осенний и весенний периоды значительно меньше, чем летом. Если вы планируете использовать альтернативный источник энергии с первого месяца весны и до поздней осени, необходимо увеличить количество фотоэлементов на 30-50% (с учетом региона).
  • Во время преобразования и хранения энергии также возникают потери, которые следует обязательно учитывать.
  • В период зимы производительность солнечных элементов крайне низкая, поскольку небо практически всегда затянуто облаками (кроме редких солнечных дней). Поэтому целесообразно использовать электроэнергию, производимую бензогенератор, ветряной станцией или же подключиться к централизованной сети снабжения.

Как произвести расчет мощности аккумулятора

Емкости аккумуляторов должно быть достаточно для обеспечения минимальных потребностей на протяжении темного времени суток. К примеру, если с наступления вечерних сумерек до восхода солнца расходуется 2,5 кВт*ч энергии, таковой должна быть минимальная емкость батарей.

Для расчета емкости в ваттах необходимо умножить разность потенциалов (напряжение) на емкость, выраженную в ампер-часах. Таким образом емкость аккумулятора с параметрами 250 Ач и 12 В составит 3000 Вт*ч или 3 кВт*ч. Но согласно инструкции, нельзя допускать полный заряд аккумуляторов. Также нужно учесть, что специальные батареи быстро изнашиваются при постоянном разряде ниже 70%, а обычные автомобильные аккумуляторы не следует разряжать до 50%. Из этого следует, что количество батарей должно минимум в 2 раза превышать полученную величину в результате расчетов.

Аккумуляторы – элементы с наименьшим сроком службы в системе, поэтому следует соблюдать правила их эксплуатации. Их рабочая емкость должна соответствовать оптимальному запасу, который определяется суточным потреблением энергии в доме. В солнечные дни они будут разряжаться не более чем на 20-30%, а в пасмурные смогут обеспечить бесперебойную работу электроприборов.

Также следует учитывать КПД батарей, который обычно не превышает 80%. Это означает, что почти 20% энергии просто рассеивается в окружающую среду. Для определения КПД следует ознакомиться с такими параметрами, как токи разряда и заряда. Чем выше значения данных параметров, тем ниже коэффициент полезного действия.

Если значение тока разряда превышает емкость аккумулятора, значительно снижается КПД отдачи энергии и падает напряжение в сети. Негативно сказывается на КПД батареи и зарядка токами высокой величины.

Потери, связанные с невысоким КПД инвертора

Поскольку преобразователь постоянного тока в переменный имеет КПД, значение которого находится в пределах от 70 до 80%, имеют место значительные потери на преобразование энергии, которые нельзя не учитывать. Из этого следует, что запас емкости батареи должен быть выше на 40% больше, чем полученный в результате предыдущих расчетов. Также для компенсации потерь должна на 40% быть увеличена площадь фотоэлементов.

Потери могут быть вызваны использованием дешевых контроллеров. Существует два типа этих устройств:

  • Контроллеры PWM, не выполняющие трансформацию энергии, поэтому аккумулятор получает лишь 4/5 мощности, вырабатываемой солнечными батареями;
  • Контроллеры MPPT, способные выполнять преобразование тока (снижать напряжение и увеличивать силу тока). Аккумуляторы получают до 99% энергии, вырабатываемой фотоэлементами.

Если вы приняли решение сэкономить на покупке контроллера, придется приобрести дополнительные солнечные батареи, чтобы увеличить их общую площадь еще на 20%, что вряд ли можно считать рациональной тратой средств.

Расчет мощности солнечных панелей для загородного или частного дома

Для проведения расчета мощности, необходимой для обеспечения нужд бытовых приборов, используемых в загородном или частном доме не нужны сложные формулы и специальные знания. Чтобы узнать количество энергии, потребляемое, например, телевизором, необходимо посмотреть его документацию. К примеру, его мощность составляет 40 Вт. Это означает, что за сутки он расходует 960 Вт*ч, но поскольку он работает не все время, а, к примеру, 6 часов, то реальное потребление составит 280 Вт*ч. На месяц телевизору требуется 8400 Вт*ч (8,4 кВт8ч) энергии. Подобным способом можно произвести расчет для остальных приборов (лампочек, холодильника и прочих), а затем суммировать полученные значения.

Предположим, общая сумма составила 100 кВт*ч, к которой еще следует добавить 40% энергии в связи с потерями, вызванными низкими КПД аккумуляторов и преобразователя. Итоговое значение – 140 кВт*ч, однако это еще не все. Если солнечная установка будет использоваться не только в летний период, а весной и осенью, следует увеличить вдвое полученное значение. Теперь разделим 280 кВт*ч на среднее количество дней в месяце (30) и количество часов светового дня, когда фотоэлементы функционируют наиболее продуктивно (7 часов). Полученное значение – 1,33 кВт*ч. Именно такой мощностью должен обладать массив солнечных батарей в данном случае.

Читайте также:  Монтаж плоского шифера на стену: преимущества материала и этапы укладки

С учетом всего сказанного выше, можно составить алгоритм расчета:

  • Предположить, что батареи функционируют только на протяжении 7 часов, при этом их КПД близок к 100%;
  • Определить общее потребление энергии приборами в доме;
  • Рассчитать мощность солнечных элементов разделив полученное выше значение на 7;
  • Умножить это значение на коэффициент, равный 1.4, чтобы учесть потери, связанные с использованием преобразователя и аккумуляторов;
  • Умножить на 1.2, если был приобретен дешевый контроллер типа PWM.

Приведем пример расчета. Например, для нужд дома требуется 150 кВт*ч энергии в месяц или 7,5 кВт*ч в день. Разделим это значение на 7 и получим примерно 1,1 кВт. Теперь необходимо учесть потери на использование аккумуляторов и инвертора, для чего умножаем полученное значение на 1.4 и получаем 1.54 кВт*ч. Однако, чтобы мощности системы было достаточно в пасмурные осенние и весенние дни, необходимо добавить примерно 50%, а значит общая производительность установки должна составить не менее 2,25 кВт*ч. В зимнюю пору понадобится ветряная станция либо бензиновый генератор, мощность которых не ниже 1.5 кВт. Для более точных расчетов следует ознакомиться со среднестатистическими метеоданными для конкретной местности.

Стоимость установки

Фотоэлементы и прочее оборудование может стоить по-разному у различных продавцов. Необходимо искать самую доступную стоимость и проверенных поставщиков. Солнечные батареи, вырабатывающие 1 кВт электричества, обойдутся примерно в 35000 грн, однако при заказе больших партий обычно предусмотрены хорошие скидки и возможность бесплатной доставки.

Для накапливания энергии потребуются аккумуляторы. Можно использовать специализированные, стоимость которых может составить от 7000 до 10000 грн (напряжение 12 В, емкость 200 Ач). Автомобильные аккумуляторы стоят намного дешевле, но служат не так долго, как специализированные. Рациональнее приобрести специализированные устройства, которые при правильной эксплуатации отработают 10 лет.

При выборе иного оборудования следует ориентироваться на личные потребности. Про контроллеры уже было сказано выше. Инверторы также разнятся по стоимости и качеству. Главное, о чем следует помнить, чем дешевле устройство, тем меньше его эффективность и срок службы.

Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.

Расчет солнечной электростанции для дома

Солнечная система с аккумуляторами может питать много приборов при условии, что их энергопотребление не превышает количество энергии, произведенной генератором. Поэтому необходимо правильно определить мощность системы. Первый шаг в этом направлении – составление спецификации, т.е. технического описания системы.

Для расчета солнечной системы, вам пригодится on-line калькулятор на нашем сайте – Расчет солнечных батарей . При проектировании домашней фотоэлектрической системы сначала нужно составить список всех электроприборов в доме, выяснить их потребляемую мощность и внести в список.

В таблице внизу даны для справки данные о средней потребляемой мощности некоторых приборов. Однако необходимо помнить, что это всего лишь приблизительные оценки. Чтобы рассчитать потребляемую мощность (E) системы с инвертором (для приборов переменного тока), нужно внести поправку (умножить среднее потребление на поправочный коэффициент, чтобы получить общую мощность). Так же для того, чтобы учесть потери в инверторе необходимо полученную мощность потребителей умножить на 1,2. Такие приборы, как холодильник, компрессор в момент пуска потребляют мощность в 5-6 раз больше паспортной, поэтому инвертор должен кратковременно выдерживать мощность в 2-3 раза выше номинальной мощности. Если потребителей с высокой мощностью достаточно много, но работают они очень редко, это может привести к тому, что у нас получится система с огромной выходной мощностью инвертора, как результат, очень дорогого. Тогда необходимо предусмотреть, чтоб не происходило одновременного включения таких приборов, это удешевит систему.

Пример:

Нагрузка переменного тока

Во-вторых, нужно оценить, сколько времени в течение дня используются те или другие электроприборы. К примеру, лампочка в гостиной горит 10 часов в сутки, а в кладовой – только 10 минут. Запишите эти данные во вторую колонку в следующей таблице. Потом составьте третью колонку, в которую впишите ежедневную потребность в энергии. Чтобы ее определить, нужно умножить мощность прибора на время его работы, например: 20 Вт x 4 часа = 80 Вт·ч. Запишите полученное число в третью колонку – это и есть ваше общее энергопотребление в день.

Кол-во часов работы в день

Энергопотребление в день, Вт·ч

Далее необходимо определить количество солнечной энергии, на которое можно рассчитывать в данной местности. Обычно эти данные можно получить у местного поставщика солнечных батарей или на гидрометеостанции. Важно учитывать два фактора: среднегодовую солнечную радиацию, а также ее среднемесячные значения при наихудших погодных условиях (см. более подробную информацию в статье Солнечная инсоляция – справочные таблицы ).

Средний месячный уровень солнечной радиации в городах Украины (кВт/ч/м.кв./день)

Среднее значение за последние 22 года

Средн годовое значение

Киев, широта 50.5 N, Долгота 30.5 E

Львов, Широта 49.5 N, Долгота 24 E

Харьков, Широта 49.59 N, Долгота 46.13 E

Одеса, Широта 46.30 N, Долгота 30.46 E

Тернополь, Широта 49.33 N, Долгота 25.5 E

Ялта, Широта 44.29 N, Долгота 34.9 E

Ужгород, Широта 48.37 N, Долгота 22.18 E

Хмельницкий, Широта 49.25 N, Долгота 27.00 E

Днепропетровск, Широта 48.36 N, Долгота 34.58 E

С помощью первого значения фотоэлектрическую систему можно рассчитать в соответствии со среднегодовой солнечной радиацией, то есть в некоторые месяцы будет больше энергии, чем требуется, а в другие – меньше. Если вы руководствуетесь второй цифрой, у вас всегда будет как минимум достаточно энергии для удовлетворения ваших потребностей, кроме разве что чрезвычайно продолжительных периодов плохой погоды.

Теперь можно подсчитать номинальную мощность фотоэлектрического модуля.

Взяв из таблиц значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м2.

Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии: W = k Pw E / 1000, где Е – значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период. Он делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня. Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы – легко рассчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.

Используя фотомодули разной мощности – 50 Вт, 70 Вт, 80 Вт, 100 Вт, 150 Вт и т.д,, можно построить генератор с необходимой нам установленной мощностью. Если потребность в энергии составляет, например, 84 Вт, лучше всего ей соответствует система из двух модулей по 50 Вт. Если же общая мощность модулей сильно отличается от вашей расчетной величины, придется пользоваться либо недостаточно мощным, либо слишком мощным генератором. В первом случае солнечная батарея не сможет удовлетворить общую потребность в энергии. Вам решать, устроит ли вас частичное обеспечение ваших потребностей. Во втором случае у вас будет избыток электроэнергии.

Определение емкости аккумуляторной батареи зависит от потребности в энергии и от количества фотоэлектрических модулей – от зарядного тока. Так как в подавляющем большинстве случаев используются свинцовые батареи, изготовленные по разным технологиям – AGM, gel, то для них оптимальным является 10% зарядный ток. В примере с ФМ 90 Вт минимальная емкость батареи составит 60 ампер-час (А·ч), а оптимальная – 100 А·ч. Такая батарея сможет сохранять 1200 Вт·ч при 12 В. Этого достаточно для электроснабжения, когда дневное потребление энергии составляет 280 Вт·ч.

В прошлом почти во всех фотоэлектрических системах использовалось постоянное напряжение 12 В. Широко применялись приборы на 12 В, питавшиеся прямо от батареи. Теперь, с появлением эффективных и надежных инверторов, все чаще в аккумуляторах используется напряжение 24 и 48 В. В настоящее время напряжение электрической системы определяется дневным поступлением энергии в течение дня. Системы, производящие и потребляющие менее 1000…1500 Вт·ч в день, лучше всего сочетаются с напряжением в 12 В. Системы, производящие 1000–3000 Вт·ч в день, обычно используют напряжение 24 В. Системы, производящие более 3000 Вт·ч в день, используют 48 В.

Напряжение в системе – это очень важный фактор, который влияет на параметры инвертора, средств управления, зарядного устройства и электропроводки. Однажды купив все эти компоненты, их трудно заменить. Некоторые компоненты системы, например, фотомодули, можно переключить с 12 В на более высокое напряжение, другие – инвертор, проводка и средства контроля – предназначены для определенного напряжения и могут работать только в его рамках.

В аккумуляторе накапливается энергия, выработанная солнечным модулем. В качестве компонента домашней солнечной энергетической установки, аккумулятор выполняет три задачи: * Покрывает пиковую нагрузку, которую не могут покрыть сами фотоэлектрические модули (резервный запас). * Дает энергию в ночное время (кратковременное хранение). * Компенсирует периоды плохой погоды или слишком высокого энергопотребления (среднесрочное хранение).

Наиболее доступные по цене и имеющиеся во всем мире, автомобильные аккумуляторы. Однако они предназначены для передачи большого тока в течение короткого промежутка времени. Они плохо выдерживают продолжительные циклы зарядки-разрядки, типичные для солнечных систем, а так же имеют достаточно высокий саморазряд. Промышленность выпускает разнообразные аккумуляторные батареи для систем резервного питания, в том числе т.н. солнечные аккумуляторы, которые отвечают данным требованиям. Их главная особенность – низкая чувствительность к работе в циклическом режиме и низкий саморазряд.

Для большой фотоэлектрической системы емкости одного аккумулятора может оказаться недостаточно. Тогда можно параллельно подключить несколько аккумуляторов, соединив все положительные и все отрицательные полюса между собой. При зарядке аккумулятор выделяет потенциально взрывоопасные газы. Поэтому нужно остерегаться открытого огня. Однако выделение газов незначительное, особенно если используется регулятор заряда; так что риск не превышает обычного, связанного с использованием аккумулятора в автомашине. И все же аккумуляторы нуждаются в хорошей вентиляции. Поэтому не стоит накрывать их и прятать в ящики.

Емкость аккумулятора указывается в ампер-часах. К примеру, аккумулятор на 100 А·ч и 12 В может сохранять 1200 Вт·ч (12 В x 100 А·ч). Однако емкость зависит от продолжительности процесса зарядки или разрядки. Период подзарядки указывают как индекс емкости C, например, “C10” для 10 часов. Отметим, что производители могут изготавливать аккумуляторы для разных базовых периодов разряда.

При хранении энергии в аккумуляторе определенное ее количество в процессе преобразования и хранения теряется. Эффективность автомобильных батарей составляет около 75%, тогда как специализированные аккумуляторы имеют несколько лучшие показатели – 80…85%. Так же со временем теряется часть емкости аккумулятора при каждом цикле заряд-разряд, пока не снижается настолько, что его приходится заменять. Специализированные аккумуляторы для систем резервного питания служат значительно дольше, чем мощные автомобильные, срок службы которых составляет всего 2-3 года против 8-10.

Важно, чтобы размер батареи позволял хранить энергию как минимум в течение 4 дней. Представим себе систему, которая потребляет 2400 Вт·ч в день. Разделив эту цифру на напряжение 12 вольт, получим дневное потребление 200 А·ч. Значит, 4 дня хранения равняются: 4 дня x 200 А·ч в день, равно 800 А·ч. Если используется свинцовая батарея, к этой цифре нужно прибавить 20%, а лучше 30…50%, чтобы аккумулятор никогда не разряжался полностью. Значит, емкость нашего идеального свинцового аккумулятора составляет минимально 1000 А·ч. Если же используется кадмиево-никелевая или железо-никелевая батарея, дополнительные 20…50% емкости не требуются, т.к. щелочным аккумуляторам не вредит регулярная полная разрядка. Также при выборе АКБ мы не рассматривали влияние температуры внешней среды (особенно отрицательных температур) на емкость аккумуляторов, что немного бы усложнило расчеты, но как показывает практика обычно АКБ размещают в отапливаемом помещении и соответственно поправка на температуру не существенна.

Внимание: Аккумуляторные батареи должны быть одного производителя, одной емкости, с одинаковым сроком изготовления – с одной партии поставки.

Аккумулятор прослужит весь свой заявленный срок только в том случае, если он используется вместе с качественным контроллером заряда, который защищает батарею от чрезмерной зарядки и глубокой разрядки. Если батарея полностью заряжена, регулятор снижает уровень тока, вырабатываемого солнечным модулем до величины, компенсирующей саморазряд. И наоборот, регулятор прерывает поставку энергии на потребляющие приборы, когда аккумулятор разряжается до критического уровня. Таким образом, внезапное прекращение энергоснабжения может быть вызвано не поломкой в системе, а результатом действия этого защитного механизма.

Контроллеры заряда – электронные устройства, которые оборудованы предохранителями для предотвращения повреждения регулятора и других компонентов системы. Среди них – предохранители против короткого замыкания и изменения полярности (когда перепутаны полюса «+» и «-»), блокировочный диод, который препятствует разрядке батареи в ночное время. Так же они оборудованы разнообразными индикаторами – светодиодами, более продвинутые модели – LCD-дисплеями, которые отмечают состояние работы, режимы и поломки системы. В некоторых моделях отмечается уровень зарядки батареи, хотя его весьма трудно определить с точностью.

Инвертор превращает постоянный ток низкого напряжения в стандартный переменный (220 В, 50 Гц). Инверторы бывают от 250 Вт до свыше 8000 Вт. Инверторы мощностью 3000 Вт и выше зачастую способны работать до нескольких шт. в параллельном подключении, увеличивая общую выходную мощность в соответствующее количество раз. Так же их можно объединять для построения 3-фазной сети. Электричество, вырабатываемое современными синусоидальными инверторами, отличается лучшим качеством, чем то, которое поступает к вам домой из местной энергосистемы. Существуют также “модифицированные” синусоидальные инверторы – они не так дороги, но при этом пригодны для большинства домашних задач. Они могут создавать небольшие помехи, “шум” в электронном оборудовании и телефонах. Инвертор также может служить “буфером” между домом и коммунальной энергосистемой, позволяя продавать избыток электроэнергии в общую электросеть.

При совместной работе фотоэлектрические системы и другие генераторы электроэнергии могут удовлетворять более разнообразный спрос на электричество с большим удобством и при меньших затратах, чем по отдельности. Когда электричество нужно непрерывно или возникают периоды, когда его нужно больше, чем может выработать одна только фотобатарея, ее может эффективно дополнить генератор. В дневные часы фотоэлектрические модули удовлетворяют дневную потребность в энергии и заряжают аккумулятор. Когда аккумулятор разряжается, дизель-генератор (либо бензиновый, или газовый) включается и работает до тех пор, пока батареи не подзарядятся. В некоторых системах генератор восполняет недостаток энергии, когда потребление электричества превышает общую мощность фотомодулей и аккумуляторов. Системы, в которых используются разнотипные электрогенераторы, объединяют в себе преимущества каждого из них. Двигатель-генератор вырабатывает электричество в любое время суток. Таким образом, он представляет собой резервный источник питания для дублирования фотоэлектрических модулей, зависящих от погоды. С другой стороны, фотоэлектрический модуль работает бесшумно, не требует ухода и не выбрасывает в атмосферу загрязняющие вещества. Комбинированное использование фотоэлементов и генераторов способно снизить первоначальную стоимость системы. Если резервной установки нет, фотоэлектрические модули и аккумуляторы должны быть достаточно большими, чтобы обеспечивать питание ночью.

Однако, использование двигателя-генератора в качестве резерва означает, что для обеспечения потребности в электричестве требуется меньшее количество фотоэлектрических модулей и батарей. Присутствие генератора делает проект системы более сложным, но управлять ею все равно достаточно легко. На самом деле современное электронное управление инверторов позволяет этим системам работать в автоматическом режиме. Инверторы можно запрограммировать на автоматическое переключение либо на генератор, либо на подзарядку батарей, либо комбинацию этих функций. Кроме двигателя-генератора, можно использовать электричество от ветроустановки, малой ГЭС или от другого источника, формируя, таким образом, гибридную электростанцию необходимого размера.

Лучший способ избежать ненужных потерь – использование соответствующих электрических кабелей и правильное их подключение к приборам. Кабель должен быть максимально коротким. Провода, соединяющие различные приборы, должны иметь площадь поперечного сечения не менее 4…6 мм2. Чтобы падение напряжения не превышало 3%, кабель между солнечным модулем и аккумулятором должен иметь поперечное сечение 0,35 мм2 (12-вольтная система) или 0,17 мм2 (24 В) на 1 метр на один модуль. То есть, кабель длиной 10 м для двух модулей должен быть не тоньше: 10 x 2 x 0,35 мм2 = 7 мм2. Поскольку с кабелем больше 10 мм2 в сечении трудно обращаться, иногда приходится смириться с более высокими потерями. Если часть кабеля пролегает под открытым небом, он должен быть устойчивым к плохим погодным условиям. Очень важна также его устойчивость к ультрафиолетовому излучению.

Фотоэлектрические модули работают лучше всего тогда, когда фотоэлементы расположены перпендикулярно солнечным лучам. Слежение за Солнцем может привести к увеличению ежегодного производства энергии на 10% зимой и на 40% летом по сравнению с неподвижно закрепленным фотоэлектрическим модулем. “Слежение” реализуется с помощью монтажа солнечного модуля на подвижной платформе, поворачивающейся за Солнцем. Прежде всего, нужно сопоставить преимущество лишней энергии, полученной благодаря слежению за Солнцем, со стоимостью монтажа и техобслуживания системы слежения.

Устройства слежения недешевы. Во многих странах не имеет экономического смысла устанавливать слежение за Солнцем для менее чем восьми солнечных панелей (например, в США). При использовании восьми фотоэлектрических модулей мы получим больше энергии, если потратим деньги на увеличение числа панелей, а не на установку слежения. Только при восьми и более панелях устройство слежения окупится. У этого правила есть и исключения: к примеру, когда фотоэлектрические панели напрямую питают водяной насос, без аккумулятора, – тогда слежение за Солнцем выгодно для двух и более модулей. Это связано с техническими характеристиками, например, с максимальным напряжением, необходимым для питания двигателя насоса.

Очень важным фактором экономического анализа является срок эксплуатации фотоэлектрической системы. Сроки службы разных компонентов солнечного энергоснабжения подсчитаны на основе опыта, накопленного за последние годы. * Срок службы фотоэлектрических панелей без заметного снижения КПД оценивается в 20…25 лет. * Каркасы и крепления из алюминия и нержавеющей стали (используются в большинстве фотоэлектрических систем) – срок службы не ниже фотоэлектрических модулей. * Аккумулятор. В зависимости от характера цикла заряд/разряд, либо буферный режим работы (разряд не более, чем на 30%), средний срок службы составляет от 4 до 10..12 лет. * Контроллеры заряда аккумуляторов рассчитаны по меньшей мере на 10 – 15 лет безремонтной эксплуатации. * Инверторы обычно служат не менее 10 – 15 лет. Многие производители дают гарантийный срок эксплуатации 5 лет

Примерные данные для калькуляции цен на фотоэлектрические системы:

Стоимость 1 Вт. мощности системы примерно составляет 2,5…3 €, в зависимости от используемых комплектующих – фотомодулей, аккумуляторных батарей, инверторов.

Как рассчитать мощность солнечной электростанции для дома и повысить КПД модулей

В этой статье мы будем говорить о выборе солнечной электростанции для дома и необходимых для этого расчетах, но для начала стоит вспомнить, какие виды солнечных электростанций используются в частном хозяйстве.

Какие солнечные электростанции подходят для частного дома

Расчет мощности солнечной электростанции: 7 шагов

Можно ли повысить КПД солнечных модулей?

Какие солнечные электростанции подходят для частного дома

Полностью автономные солнечные электростанции созданы для домов, не подключенных к централизованному электроснабжению. Днем автономная система снабжает дом электричеством и заряжает аккумуляторы, которые возьмут на себя обеспечение хозяйства энергией в ночное время.

Сетевые солнечные электростанции не накапливают электроэнергию, они работают параллельно с внешней сетью по приоритетной схеме. Дом в основном снабжается от солнечных модулей, а внешняя сеть используется только ночью, при плохой погоде или при недостатке мощности. Нередко ими компенсируют и недостаток выделенной мощности – это распространенная проблема в дачных поселках, сильно ограничивающая степень комфорта в загородном доме.

Автономная СЭС при необходимости может быть легко модернизирована до автономно-гибридной, которая будет сочетать преимущества обоих описанных выше типов. Этот тип станции может работать параллельно с сетью, обеспечивая функцию резервного питания на случай отключения централизованной подачи.

Расчет мощности солнечной электростанции: 7 шагов

Ориентировочные значения суммарной мощности, потребляемой домохозяйством, можно высчитать самостоятельно. Точность расчетов критически важна для автономных электростанций, критерии выбора сетевых могут быть мягче, так как у них недостаток мощности может компенсироваться за счет централизованного электроснабжения.

1. Составляем список приборов-потребителей энергии, причем достаточно подробный. Иногда при расчетах ограничиваются “прожорливыми” потребителями, а мелкую бытовую технику записывают в графу “прочее” – это неправильный подход: бытовые приборы с нагревательными элементами (чайники, утюги, фены и пр.) во время работы могут тратить не меньше электричества, чем более крупные устройства. Очень желательно также сделать разбивку по сезонам: структура энергопотребления в зимнее время может отличаться от летней, особенно если в холода вы в дополнение к основному отоплению используете электрические обогреватели. Совсем скромных потребителей вроде мобильных устройств можно не учитывать досконально, но иметь их в виду будет не лишним.

2. Определяем среднее время работы каждого прибора в течение суток. Это можно сделать только по результатам наблюдений, поэтому придется пару недель скрупулезно записывать, что и когда используется. Особенно важно иметь сведения о возможных комбинациях приборов, работающих одновременно более 5 минут: например, смоделировать ситуацию, когда активен компрессор холодильника, включены стиральная машина, электрический чайник и телевизор. Стоит принимать во внимание и режим дня и недельное расписание жизни домохозяйства: у семей, работающих вне дома, пик потребления электричества приходится на утро, вечер и выходные.

3. Находим информацию об энергопотреблении каждого конкретного прибора. Она указывается в техпаспорте или в специальной наклейке на корпусе. В документации чаще всего указывается мощность прибора в ваттах, энергопотребление подсчитывается путем умножения мощности на время работы. При этом нужно учитывать, что если устройство не новое, его фактическое энергопотребление может быть выше паспортного, особенно это касается холодильников. Второй важный момент – так называемые коэффициенты пускового тока: некоторые приборы в течение короткого времени (обычно это секунды) после включения выдают резкий скачок потребления, которое может превышать номинальные значения в 2 и более раз. В доме это чаще всего холодильники, посудомоечные машины и кондиционеры, на загородном участке – погружные водяные насосы. К последним нужно относиться особенно внимательно, так как у некоторых моделей коэффициент пускового тока может составлять 3-5. Если это значение не указано в техпаспорте устройства, его можно попытаться узнать у производителя.

Наклейка с указанием мощности прибора (электрический чайник)

4. Суммируем цифры. Умножаем данные о мощности приборов в кВт на количество часов с учетом сезонных особенностей – это будет минимальный показатель примерного среднего энергопотребления. Затем определяем максимальные показатели при одновременной работе нескольких мощных приборов с учетом пусковых токов. Для самопроверки можно воспользоваться историей показаний электросчетчиков за последний год: они должны давать примерно среднее значение между минимумом и максимумом. Если есть сильное расхождение, проверьте, все ли вы учли: иногда можно случайно забыть внести в список какой-то прибор, который находится не на виду – тот же погружной насос.

Должны получиться примерно такие таблички:

5. Закладываем запас мощности. Здесь нужно учитывать два момента. Первое: солнечная электростанция – долговечный продукт (срок службы современных гетероструктурных модулей – 30 лет и более), за время ее эксплуатации энергопотребность вашего хозяйства наверняка возрастет. Поэтому “задел на будущее” нужно либо заложить сразу, либо предусмотреть условия для масштабирования системы по мере роста требований к ней: например, подумать, можно ли будет при необходимости найти место для размещения дополнительных солнечных модулей и вспомогательного оборудования. Второе: около 30% запаса хорошо бы иметь и для текущих нужд – ситуации бывают разные, и может случиться так, что в какие-то моменты нагрузка на солнечную электростанцию превысит ее возможности. Особенно это актуально для автономных солнечных электростанций: сетевая в случае перегрузки просто доберет недостающее от сети 220В, а автономной взять дополнительные ресурсы будет неоткуда.

6. Получаем итоговые цифры. Упрощенный подбор станции осуществляется на основании двух параметров: суточного электропотребления (кВт*ч) и номинальной мощности приборов (Вт). Первое значение будет определять мощность системы по солнцу, второе — мощность инвертора.

7. Выясняем площадь кровли, на которой будут установлены фотоэлектрические модули. Если сохранился проект дома, то нужные цифры можно найти в нем. Если нет – придется самостоятельно сделать замеры или обратиться за помощью к инженерам компании, в которой вы намерены заказать солнечную электростанцию. Важных моментов здесь несколько.

• Солнечные модули желательно устанавливать на южной или юго-восточной стороне – именно там они будут получать самое большое количество солнечной энергии.

• Крепить несущие конструкции на карнизный свес кровли категорически не рекомендуется, от него следует отступать до проекции стен дома.

• Если кровля сложной формы (многощипцовая) или на ней установлены дополнительные элементы (трубы, аэраторы), нужно расположить солнечные панели так, чтобы они не оказались в зонах затенения.

• Естественно, следует вычесть площадь, занятую снегозадержателями, лестницами и пр.

Учтя все это, мы получаем полезную площадь кровли, которую можно занять фотоэлектрическими модулями, и делим ее на площадь одного модуля. Получившееся значение – максимальное число модулей, которое физически можно установить на крыше вашего дома. Умножаем его на мощность каждого отдельного модуля и сравниваем с цифрой из п. 6. Если результат больше или равен – прекрасно; если нет, то на вашем доме вряд ли удастся смонтировать электростанцию нужной мощности. Опять-таки, в случае с сетевой электростанцией это не беда, а для автономной – проблема, требующая нетривиальных решений.

Можно ли повысить КПД солнечных модулей?

К сожалению, гарантированно эффективных и при этом финансово выгодных способов нет. На форумах в Интернете можно встретить советы установить трекер – специальное устройство, которое будет поворачивать солнечные модули так, чтобы по возможности обеспечить их максимальную освещенность в течение всего дня. Но расчеты показывают, что выгоды в этом нет. Финансово это невыгодно, так как трекер стоит очень дорого, и выработанные с его помощью дополнительные киловатты его не окупают; к тому же трекер сам по себе затрачивает электричество, которое придется вычитать из этих дополнительных киловатт-часов.

Именно поэтому единственный по-настоящему работающий подход – сразу выбрать модули с самым высоким КПД и смонтировать их так, чтобы они получали наибольшее количество солнечного света.

Что касается первого условия, то, пожалуй, самыми эффективными на мировом рынке считаются модули и ячейки, изготовленные по гетероструктурной технологии.

Производителей этого продукта пока немного, и тем более приятно знать, что один из них – российская компания “Хевел”, которая не только запустила производство полного цикла, но и внесла в технологию усовершенствование, благодаря которому удалось добиться рекордных показателей энергоэффективности. Гетероструктурные модули “Хевел” превосходят по ключевым показателям модули, изготовленные по классическим кремниевым технологиям (моно- и поликристаллические).

• Очень высокий КПД: до 22,3 % для двусторонних модулей (BiFi +20%)), в том числе в условиях слабого освещения.

• Сохранение мощности при нагреве. Солнечным модулям, изготовленным по классическим технологиям, свойственна большая потеря мощности при высокой температуре. Это существенный недостаток, так как модули просто не могут не нагреваться, находясь на открытом солнце. У гетероструктурных модулей “Хевел” потеря мощности при нагреве минимальна.

• Низкий коэффициент деградации. Официальная Гарантия “Хевел” на выработку гетероструктурных модулей – 25 лет, реальный срок службы – 30 лет и более. За столь долгое время потеря мощности составляет не более 17% – это один из самых низких показателей, достижимых на сегодняшний день.

Важно отметить, что в данном случае гарантия в 25 лет – не рекламный трюк, а реальное обязательство крупного отечественного производителя. «Хевел» – лидер на российском рынке по совокупному объему построенных солнечных электростанций промышленного масштаба: на оптовом рынке электроэнергии в России работает множество электростанций «Хевел» суммарной мощностью более 600 МВт.

Если говорить о достижении максимального КПД за счет особенностей расположения солнечных модулей, то здесь остаются в силе общие рекомендации: по возможности они должны быть ориентированы на юг или юго-восток, если это затруднительно, то может потребоваться увеличение числа модулей – так можно отчасти компенсировать недостаток света. Кроме того, нужно следить, чтобы на поверхности модулей не скапливалась пыль и их не затеняли деревья, растущие вокруг дома.

Как рассчитать солнечную электростанцию и выбрать оборудование для нее?

Как рассчитать солнечную электростанцию и выбрать оборудование для нее? Очень просто!

Как рассчитать солнечную электростанцию и выбрать оборудование для нее

Расчет небольших солнечных электростанций можно сделать достаточно просто вооружившись листом бумаги и ручкой. В этой статье мы расскажем основные принципы подбора оборудования для бытовых солнечных электростанций.

ВАЖНО: комплектация солнечной системы никак не связана с площадью дома. Она зависит только от мощности подключаемого оборудования и количества потребляемой энергии.

Основными элементами солнечной электростанции являются:

· Солнечные панели – они генерируют электроэнергию, и чем они мощнее и их больше, тем больше электроэнергии можно получить в течении дня.

· Аккумуляторные батареи – в них происходит накопление элеткроэнергии, которую можно использовать в отсутствии солнца (ночью), когда выработки электричества на солнечных панелях нет.

· Контроллер заряда аккумулятора – это устройство, которое позволяет обеспечить правильные режимы заряда аккумулятора. Выбор этого устройства, как правило, чисто технический момент за исключением выбора типа контроллера MPPT или ШИМ. Иногда контроллер заряда может быть встроен в инвертор.

· Инвертор преобразователь напряжения – это устройство преобразует постоянный ток на аккумуляторах в переменный 220В, который используется во всех бытовых электроприборах. Мощность инвертора ограничивает максимальную мощность электропотребителей, которые могут быть подключены к системе.

Теперь подробно остановимся на каждом из этих элементов системы, для того, чтобы понять, какое именно оборудование и в каком количестве, нам потребуется.

Как выбрать инвертор – преобразователь напряжения

Подбор оборудования для системы начинается с выбора инвертора. Все инверторы делятся на 2 группы по форме выходного сигнала – чистый синус (форма сигнала в виде синусоиды) и модифицированный синус (форма сигнала в виде ступенек или трапеций). Если к системе будет подключаться любая индуктивная нагрузка: двигатели , компрессоры и т.д. то инвертор должен быть обязательно с чистым синусом на выходе. Т.е. если вы планируете подключать холодильник, насос, электроинструмент и т.д. то инвертор должен на выходе выдавать чистую синусоиду.

Если же подключаемая нагрузка это телевизоры, зарядные устройства, освещение и т.д. то модифицированный синус вполне подойдет.

Таким образом чистый синус имеет более широкую область применения, но и цена у него существенно дороже чем у инверторов с модифицированным синусом.

Итак, мы определили тип инвертора, который нам нужен, далее нужно определить его номинальную мощность. Для того, чтобы это сделать, нужно просуммировать мощность всех электроприборов которые могут быть включены одновременно. Мощность каждого прибора можно найти в инструкции или на самом устройстве. Например: холодильник (300Вт) + телевизор (70Вт) + насос (400Вт) + микроволновка (1000Вт) = 300Вт+70Вт+400Вт+1000Вт = 1770Вт. Соответственно в данном случае инвертор должен иметь номинальную мощность более 1770Вт. Кроме того важно понимать, что у некоторых приборов существуют пусковые токи, которые кратковременно появляются при запуске оборудования. Эти пусковые токи могут быть в 5-7 раз больше чем номинальные. Это важно учитывать при выборе инвертора. Благо у каждого инвертора есть запас прочности – пиковая нагрузка и зачастую эта характеристика в 2 раза больше номинальной мощности. Поэтому в данном примере инвертора номинальной мощностью 2000Вт хватит для обеспечения питанием указанных приборов, даже с учетом того, что у холодильника в момент пуска мощность может быть 300Вт*7=2100Вт.

Как рассчитать солнечные панели

Следующий вопрос – как рассчитать сколько солнечных батарей нужно установить, чтобы их было достаточно для обеспечения нужным количеством электроэнергии.

Прежде чем ответить на этот вопрос, давайте выясним, сколько же электроэнергии мы потребляем. Это можно сделать умножив мощность электроприборов на время их работы, например: лампочка мощностью 50Вт работая в течении 3х часов, израсходует 50вт*3ч=150Вт*ч электроэнергии. Таким образом, можно посчитать полное электропотребление за сутки, но есть и более простой способ – посмотреть показания электросчетчика за месяц и разделить на количество дней в месяце. К примеру: счетчик за месяц (30 дней) накрутил 150кВт*ч электроэнергии. В среднем за сутки получается 5кВт*ч электроэнергии. Это значит, что массив солнечных панелей должен за солнечный день успеть сгенерировать такое же количество электроэнергии.

Солнечные панели бывают различного размера и мощности, и в каждом конкретном случае бывает удобнее использовать панели определенного размера, но, как правило, для средних и больших систем используются панели 250-300Вт, поскольку они наиболее оптимальны с точки зрения монтажа. Мощность панели это как раз то количество электроэнергии, которая она вырабатывает при полной освещенности. Т.е. если на солнечную панель 250Вт в течении 3х часов под прямым углом будет светить солнце, то она выработает 250Вт*3ч=750Вт*ч электроэнергии. Конечно в течении дня может быть достаточно облачно и мало света, поэтому та же самая панель при облачной погоде может вырабатывать в 3-4 раза меньше электроэнергии чем в солнечную погоду. Таким образом для грубой оценки такой подход в расчетах может подойти. Например если нужна система, которая летом должна вырабатывать 5кВт*ч электроэнергии в день, при условии, что в среднем в течении 4х часов на панель будет светить солнце (4ч*250Вт=1000Вт), то нам понадобится не менее 5 таких панелей.

Для более точного расчета необходимо использовать так называемые таблицы солнечной инсоляции, в которых указаны средние значения солнечной освещенности на 1 кв.м. за сутки в разных регионах нашей страны. К примеру в Астрахани в июне на поверхность наклоненную на 35градусов к горизонту за месяц проникает 197.7 кВт*ч энергии. За сутки в среднем получится около 6.6кВт*ч энергии. Конечно, не вся эта энергия будет преобразована в электрическую. У каждого модуля есть КПД (коэффициент полезного действия, не путать с КПД ФЭПа), в среднем это 16.5-17%. Это значит что нужно 6.6 кВт*ч умножить на 17%, в результате чего получим 1.12кВт*ч в сутки с одного квадратного метра солнечных панелей. Зная нужное нам количество энергии в сутки, к примеру 5кВт*ч, мы можем определить нужную нам площадь солнечных панелей – 5кВт*ч/1.12кВт*ч=4.46м.кв. Солнечный модуль 250Вт имеет размеры 1650х990мм и площадь равную 1.64м.кв.. Таким образом 3х модулей по 250Вт будет достаточно для генерации 5кВт*ч электроэнергии в сутки на территории Астрахани в июне.

По такому принципу делаются профессиональные расчеты систем, поскольку нет более точных данных по работе солнечных панелей, чем статистические.

Сколько нужно аккумуляторов

Количество энергии которое может быть запасено в аккумуляторной батарее можно оценить по формуле «емкость умножить на номинальное напряжение». Например аккумулятор емкостью 100Ач и напряжением 12В, может запасти в себе 100Ач*12В=1200Вт*ч электроэнергии.

Зная, сколько энергии у нас расходуется в сутки, мы можем определить какая часть этой энергии расходуется из аккумуляторов в отсутствии солнца. Но поскольку срок службы аккумуляторов на прямую зависит от глубины его разряда, и не рекомендуется разряжать аккумуляторы ниже 50%, мы рекомендуем делать расчет аккумуляторов исходя из суточного потребления, например в сутки потребляется 5кВт*ч, это 5000Вт*ч. Разделив потребление на 12В, получим требуемую емкость банка аккумуляторов 5000Вт*ч/12В=416Ач. Т.е. 4 аккумулятора по 100Ач гарантированно не разрядятся полностью в течении дня, что позволит увеличить срок их службы, а также обеспечат необходимым количеством электроэнергии в отсутствии солнца – ночью.

Как выбрать контроллер заряда аккумулятора и что это такое можно прочитать по адресу: http://oporasolar.ru/articles/11066-kontrollery-zaryada . В этой статье мы не будем останавливаться на данном этапе.

Зима-Лето

Зимой солнца сильно меньше чем летом, поэтому если вы хотите полностью автономную систему, то все расчеты необходимо делать основываюсь на минимальных значениях солнечной инсоляции, которые, как правило наблюдаются в декабре-январе. Так вы гарантированно обеспечите себе автономное питание в течении года. К примеру в той же Астрахани, значение солнечной инсоляции в декабре в 4 раза меньше чем в июне, поэтому для автономной работы системы зимой, потребуется в 4 раза больше солнечных панелей.

Наличие внешней сети или генератора

Если у вас есть возможность подключиться к сети или генератору, то это позволит не покупать большое количество солнечных панелей, для обеспечения питанием в зимнее время. При длительном отсутствии солнца можно включить сеть или генератор для зарядки аккумуляторов не небольшой период времени до полной зарядки, и продолжать получать энергию от солнца.

На сегодняшний день есть большое количество инверторов со встроенным зарядным устройством аккумуляторов, вплоть до автоматического переключения на питание от сети в случае сильного разряда аккумуляторных батарей. Такие инверторы наиболее удобны в использовании и достаточно просты в подключении.

Таким образом, мы разобрались как можно сделать расчет солнечной электростанции, а если у вас остались вопросы вы можете позвонить нам и мы поможем вам разобраться!

Аспекты подбора солнечной электростанции для дома

Интерес к альтернативным энергетическим системам возрастает от года в год. Возможность бесплатного получения электричества из природных источников — современный вид энергопотребления. Наряду с ветряными электростанциями широко используются солнечные электростанции для дома. Отличительной особенностью данных устройств являются фотоэлементы, улавливающие энергию солнечных лучей.

Устройство гелиосистемы

Помимо них в конструкцию могут входить дополнительные компоненты: солнечные коллекторы, резервные генераторы, контроллеры заряда и иные составляющие.

Это основные модули, составляющие основу гелиостанции.

  • Модули, улавливающие энергию солнечных лучей;
  • Аккумуляторы для накопления энергии;
  • Инвертеры, преобразующие ток в переменный;

Солнечные модули являются основным компонентом гелиосистемы, они улавливают лучевые импульсы и преобразуют их в электроэнергию. Выбор определенного модуля зависит от вырабатываемой им мощности.

Инвертеры дают выработанному току переменную частоту, необходимую для потребления бытовыми приборами. Аккумуляторы энергии, выполняющие функцию накопительной системы, создают условия независимости электропитания при любых погодных условиях.

Обзор популярных моделей

Электростанция Солнечный дом

  • Мощность: 2 400 Вт;
  • Мощность на пике: 5 000 Вт;
  • Напряжение выходное: 220 Вольт;
  • Мощность фотоэлементов: 480 Вт;
  • Тип фотоэлементов: поликристаллические;
  • Вместимость аккумуляторов: 400 А/час;
  • Тип аккумулятора: GEL.

Данные солнечные автономные электростанции для дома обеспечивают объекты, не подключенные к центральным сетям, экологически чистой энергией. КПД — от 3,6 кВт/час ежедневно вне зависимости от пасмурной погоды. Гелиосистема отличается легкой настройкой и гарантией на долгий срок: фотоэлементы — до 26 лет, аккумуляторы — до 10 лет. В комплектации — две фото панели, инвертор с контроллером, два гелевых аккумулятора, комплект проводов и щит. Цена солнечной автономной электростанции для дома — 104 543 рубля.

  • Мощность: 1 — 10 кВт;
  • Напряжение выходное: 220 Вольт;
  • Мощность фотоэлементов: 150 Вт;
  • Вместимость аккумуляторов: 150 А/час;
  • Тип аккумулятора: GEL;
  • Цена: 38 560 рублей.

Данная гелиосистема накапливает энергию в светлое время суток и распределяет ее согласно заданным параметрам контроллера. Также контроллер следит за уровнем наполнения аккумуляторов и не допускает их полной разрядки. Особенностью современных солнечных электростанций является накопление энергии солнца даже в зимнее и дождливое время.

Станция Сад (Смарт)

  • Мощность: 6 кВт;
  • Фотоэлементы: 600 Вт;
  • Вместимость аккумуляторов: 1300 Вт/час;
  • Тип аккумулятора: GEL;
  • Цена: 36 360 рублей.

Данная гелиостанция предназначена для питания энергией садовых домиков и обеспечения освещением участков. Силы аппарата хватает на зарядку компьютерной техники, холодильника, светоприборов, телефонов и телевизоров. Также можно подключать садовые электроинструменты, насосы и прочий инвентарь. Пиковая мощность — до 900 Вт. В зимний период станция вырабатывает около 500 кВт/час, а летом обеспечит энергией до 1 500 кВт/час.

Как выбрать надежную электростанцию для дома

На что обратить внимание при подборе нужной электростанции:

  • Вы должны знать показатель максимальной потребляемой энергии бытовыми приборами одномоментно с учетом прибавки на пусковую мощность. В соответствии с этим подбирается тип фотоэлементов электростанции.
  • Вы должны рассчитать максимальную суточную нагрузку потребления энергии (в Вт/час).
  • При выборе готовых солнечных электростанций нужно учитывать время использования агрегата: круглогодично или сезонно.
  • Также вы должны заранее поинтересоваться у местной метеослужбы о среднегодовой и среднемесячной гелио активности.
  • Выбор фотоэлементов зависит от показателей суммарной потребляемой энергии.
  • При выборе аккумуляторов после расчета солнечной электростанции для дома обратите внимание на низкий показатель уровня саморазряда: модуль должен сохранять энергию минимум четыре дня. Наиболее подходящими являются аккумуляторы GEL. Их особенность — неприхотливость в сложных условиях эксплуатации. Они меньше подвержены воздействию неблагоприятных моментов, чем аккумуляторы AGM.
  • Выбор инвертора зависит от количества приборов с высокой пусковой мощностью. Если таких приборов много, то следует подобрать синусоидный инвертор, причем, мощность инвертора должна перекрывать пусковую мощность приборов. Допустим, одномоментно потребляемая мощность — 600 Вт при максимальной пусковой в 2 000 Вт, следовательно, вы подбираете инвертор с показателем постоянной величины 650 Вт и пусковой — больше 2 000 Вт.
  • Для правильного выбора контроллера необходимо разделить мощность фотоэлементов (батарей) на напряжение аккумуляторов. В этом случае мы получим максимальный показатель зарядного рабочего тока, который должен выдерживать контроллер.

В целях безопасности эксплуатации солнечных электростанций рекомендуется приобретать кабели с двойной изоляцией. Не помешает приобрести опцию защитного отключения в аварийных случаях и переключатели тока в режиме постоянный/переменный.

Необходимые расчеты

Чтобы обеспечить все бытовые электрические приборы энергией, необходимо сделать расчет солнечной электростанции. Суммарная сила потребления тока приборами не должна превышать вырабатываемое генератором количество энергии.

Смотрим видео, особенности выбора электростанции:

Составьте список всех потребителей энергии в вашем доме, и укажите их мощность.

При расчете следует учитывать пусковую величину электротехники. При запуске некоторых приборов (компрессор, холодильник) пусковая мощность превышает номинальную в пять-шесть раз. Для экономии энергии не допускайте одномоментного включения приборов с высокой пусковой величиной.

Выясните, какое количество времени работают ваши электроприборы. После этого определите средний показатель потребления энергии в сутки. Для этого умножьте номинальную мощность электрического прибора на рабочее время. К примеру, 100 Вт х 3 часов = 300 Вт/ч. Получается, что прибор потребляет 300 Вт энергии в день. Затем сложите все показатели, и вы получите среднесуточное потребление электротока.

Смотрим видео, производим расчет системы:

Узнайте в местном метеоцентре о среднем количестве энергии солнца, на которое можно рассчитывать при работе домашней солнечной электростанции. Вам нужны данные о среднегодовой и среднемесячной гелио активности, а именно, о самых низких ее показателях. Среднегодовые показатели позволят вам определить примерный месячный расход энергии.

Теперь нужно определить, сколько фото модулей вам необходимо. Для этого разделите показатель потребления энергии на производимую мощность фото модуля. Если мощность модуля не перекрывает необходимое потребление энергии, нужно приобретать две или три батареи. При покупке солнечной электростанции для вашего дома учитывайте, что ее мощность должна перекрывать потребность в энергии.

Особенности монтажа

При монтаже гелиостанции нужно учитывать наличие фотоэлементов. Батареи необходимо устанавливать таким образом, чтобы на них попадали солнечные лучи под прямым углом. В этом случае вы повысите КПД электростанции. Угол отклонения от перпендикуляра не должен превышать отметку в +15%, с учетом перемещения солнечного диска.

Для круглогодичного использования гелиостанции угол отклонения определяется положением географической широты. В летний период необходимо переместить угол отклонения на отметку «минус 15%» к географической широте.

Выбор и установку солнечной электростанции для дома лучше доверить профессионалам. Для лучшей производительности требуются определенные знания, иначе система будет работать не качественно. Приобретение фотоэлектрической системы должно согласовываться с уровнем потребления энергии в конкретном случае. Необходимые расчеты вам поможет сделать специалист.

Добавить комментарий